
> DRAFT VERSION - FOR DISCUSSION ONLY <

Abstract— As the use of Session Initiation Protocol (SIP) servers
as Next Generation Networks (NGN) telecommunication level
devices increase, the need for effective overload control
mechanisms is essential. Overload occurs when SIP servers have
insufficient resources to handle all SIP messages they receive.
This situation not only reduce the performance of a server but
can also lead to a complete failure of the service it provides.

The current overload control mechanism of SIP (the 503 Service
Unavailable response) is unable to prevent congestion collapse
and may spread the overload condition throughout the network.
Whilst work to address this topic is underway within Standards
Development Organizations (SDO) as well in the research
community, it’s still in its infancy.

This document reviews the SIP server overload problem
statement.

Index Terms—SIP, overload, problem statement

I. INTRODUCTION

Overloads generate calling rates much greater than the

predictable daily profile to which the network can be
economically dimensioned. Operators of traditional PSTNs
have long recognized the need for providing overload controls
to prevent the associated processing resources from being
swamped. For instance, VIII shows the range of calling rate
measurements taken from BTs network. From there, it can be
observed that overload can exceed 64 times the systematic
peak calling rate for six 15 minutes periods a year. While,
during such an overload one might expect a large proportion
of call attempts to fail, however, it would be unacceptable for
the service to fail completely due to processing overload. In
particular, emergency traffic and other important streams
should be guaranteed at any time under any circumstance.

With the maturity of telecommunications networks, current
fixed network, mobile network and the Internet are moving
towards the convergence on to an IP-based network.

The Session Initiation Protocol (SIP) is an application-layer
signaling protocol standardized by IETF for creating,
modifying, and terminating multimedia sessions in the
Internet.
SIP is capable of running on Transport Control Protocol
(TCP), User Datagram Protocol (UDP), or Stream Control

Transmission Protocol (SCTP) which are in turn carried over
IP. SIP is actually the center of efforts for the previously
mentioned telecommunications convergence. Indeed, major
standards bodies including 3GPP, ITU, and ETSI have all
adopted SIP as the core signaling protocol for Next
Generation Networks (NGN) predominately based on the IP
Multimedia Subsystem (IMS) architecture where SIP servers
constitute the core components and are responsible for
processing and routing signaling traffic.

An overload can lead to two types of congestion. One is a
network congestion in which packets are lost in the IP layer.
The other is a server overload in which a load is concentrated
at a particular server. As the result, the server will be
overloaded with a consequent degrade on the service quality,
such as throughput and call setup delay. This document
focuses the server congestion.

Server congestion is not a new problem. This type of
congestion is observed in the PSTN where telephone traffic
sometimes is concentrated at a specific telephone exchange. In
such a scenario, server overload control is significantly helped
by the hierarchical nature of network implementation. NGNs,
however, usually have much flatter control architectures with
large, uncertain and complex peer interactions. In the IP-based
network, it also is expected that traffic created by SIP users is
concentrated at a particular SIP server causing the server
congestion. Overload is said to occur if a SIP server does not
have sufficient resources to process all incoming SIP
messages. These resources may include CPU processing
capacity, memory, network bandwidth, input/output, or disk
resources.

The SIP protocol provides a limited built-in mechanism for
overload control through its 503 Service Unavailable response
code. However, since the cost of rejecting a SIP session
usually cannot be ignored compared to the cost of serving a
session, this mechanism cannot prevent overload of a SIP
server and it cannot prevent congestion collapse. When a SIP
server has to reject a large amount of arriving sessions, its
performance collapses and, in addition, it may spread the
overload condition throughout the network— this are the key
observations that distinguishes the SIP server overload
problem from others.

With sharp demand already seen in PSTN networks, the need
for an automatic means of minimizing the effect of server
overload in SIP signaling networks is paramount; specially in
the service-level assured world of the telecommunications
operators, where the user experience requires more than “best
efforts”.

SIP Server Overload Problem Statement

Victor Pascual
Tekelec

Berlin, Germany
victor@iptel.org

1

> DRAFT VERSION - FOR DISCUSSION ONLY <

This document examines and summarizes results from
selected papers. While a related work analysis is out of the
scope of this document, the present is aimed to provide a
discussion on the SIP server overload control problem
statement definition and invites other opinions and comment.
In Section II definitions and abbreviations are included for the
sake of understanding. In Section III the interaction between
transport and application layers is described. A SIP server can
be overloaded for many reasons, such as emergency-induced
call volume or flash crowds generated by TV programs. In
Section IV possible causes for overload are presented.
Different categories of SIP server overload are described in
Section V. Section VI describes the impact of overload on
user behavior, server resources and the potential implications
on other servers. In Section VII existing overload control
mechanisms are described stressing the limitations of the
current mechanisms. Finally, Section VIII summarizes the
document and describes open issues that will need to be
solved in future work.

II.DEFINITIONS AND ABBREVIATIONS

For the purpose of the present document, the following
definitions and abbreviations apply.

A. Definitions

- Admission control: mechanism that accepts or rejects
SIP requests on the basis of system load state of
processing resource.

- Effective throughput: rate of admitted (and
successfully completed) requests per second.

- Engineered throughput: number of requests the
system should be able to deal with under normal
operational conditions.

B. Abbreviations

CPU Central Processing Unit
ETSI European Telecommunications Standards
Institute
ITU International Telecommunication Union
IMS IP Multimedia Susbsytem
3GPP 3rd Generation Partnership Project
DNS Domain Name System
SIP Session Initiation Protocol
SIP-T SIP for Telephones
SIP-I SIP with encapsulated ISUP
ISUP ISDN User Part
BICC Bearer Independent Call Control
DoS Denial of Service
DDoS Distributed Denial of Service
IP Internet Protocol
IM Instant Messaging
SLA Service Level Agreement
TCP Transmission Control Protocol
UDP User Datagram Protocol
SCTP Stream Control Transmission Protocol
NGN Next Generation Network
VoIP Voice over IP
PSTN Public Switched Telephone Network
ISDN Integrated Services Digital Network

III. INTERACTION BETWEEN TRANSPORT AND APPLICATION LAYERS

SIP is capable of running on top of both unreliable and
reliable transport protocols. This section summarizes the
interaction between the application (SIP) and the transport
layers.
Despite RFC3261 only mandates the implementation of
Transport Control Protocol (TCP) and User Datagram
Protocol (UDP) for SIP transport, emerging carrier grade
implementations are also including the Stream Control
Transmission Protocol (SCTP) in order to overcome some of
the limitations of TCP.

A. SIP over unreliable transport protocols

Under congestion, SIP message discard or packet losses in a
network might occur. SIP detects this failure by a time out and
retransmits the failed message. Unreliable transport protocols
simply forward the message from/to the IP layer and the
application layer is responsible for detecting and recovering
from the failure. RFC3261 defines retransmission procedures
to improve the reliability of transmitting SIP messages. It
defines two retransmission types- one is for the INVITE
transaction (used for common call set-up) and the other is for
non-INVITE transaction, which is extensible to most of the
SIP extensions enabling new applications (e.g. IM, presence,
etc.)

1) INVITE transaction retransmission
In the INVITE transaction, the client retransmits the

original request at intervals of 0.5, 1.0, 2.0, 4.0, 8.0 and
16.0 seconds. After 32 seconds without any response, the
client transaction ceases retransmission. If a provisional
response is received, this time could be extended up to 3
minutes.

2) Non-INVITE transaction retransmission
The non-INVITE requests are retransmitted at intervals

of 0.5, 1.0, 2.0, 4.0, 4.0, 4.0, 4.0, 4.0 and 4.0 seconds. After
32 seconds in total, the retransmission is ceased.

Although these retransmissions improve the message
reliability, they increase the load applied to a SIP server and
may affect the SIP signaling performance. Specially during
overload conditions.

B. SIP over reliable transport protocols

In case of TCP or SCTP, SIP does not retransmit SIP
messages. Transport-layer flow control protects from packet
loss. However, the flow control makes the SIP message
transmission delay large. If the SIP queue is full and a SIP
message is received, there can be two scenarios. One is that
the received message is discarded at the SIP queue, just like
UDP. The other is that the received message waits until the
SIP queue becomes free. Since SIP is a real-time protocol, it
can be assumed that SIP messages that encounter the sending
buffer full are usually discarded.

IV. CAUSES OF SIP SERVER OVERLOAD

A SIP server is said to be overloaded if one or more of its
resources is having a value above some maximal limits. Going
above these limits can be caused for several reasons (for
instance, when it is offered more traffic that its designed

2

> DRAFT VERSION - FOR DISCUSSION ONLY <

capacity) and it can degrade the system performance and even
lead to a complete failure.

SIP server overload can occur for many reasons. The
following subsections explain potential sources for signaling
peaks in SIP networks.

A. Poor Capacity Planning

SIP networks need to be designed with sufficient numbers
of servers, hardware, disks, etc. in order to meet the needs of
the subscribers they are expected to serve. If this work is not
done properly, the network may have insufficient capacity to
handle even predictable usages.

B. Capacity Reduction

SIP server overload can be caused by reducing the available
capacity. This may be caused by network equipment failures
(e.g. the loss of a SIP server) or other kind of failures. These
events happen very rapidly and it is difficult for the network
to shed load in these circumstances.

1) Dependency Failures
A SIP element can become overloaded because a resource

on which it is dependent has failed or become overloaded.
In this case, even minimal traffic might cause the server to
go into overload. Examples of such dependency overloads
include DNS servers, databases, disks and network
interfaces.

2) Internal Failures
Local failures could block the server from serving SIP
requests. For example, software errors might deplete the
available server memory (in a similar manner as a memory
DoS attack).
3) External Failures
A SIP element can become overloaded when it is a

member of a cluster of servers sharing the load, and one or
more of the other members in the cluster fail. In this case,
the remaining elements take over the work of the failed
elements.

C. Avalanche Restart

This happens when a large number of clients all
simultaneously attempt to connect the network at the same
time. Avalanche restart can be caused by several events.

1) Reboots after a Blackout
Once the power is restored after a failure in a large
metropolitan area, all the SIP user agents simultaneously
power on and begin booting. They will all then connect to
the network and register at the very same time, causing a
flood of a registration attempts.
2) Failure of a large network connection
In this scenario there is a failure in a network device like
the access router for a large enterprise. When the
connectivity is restored clients will register all within a
short period of time.
3) Failure of a SIP server
When a SIP server fails, if clients had all connected to the
server with a connection-oriented protocol (e.g. TCP or
SCTP), its failure will be detected followed by re-
connection and re-registration to another server.

D. Flash crowds

A flash crowd occurs when an extremely large number of
users all attempt to simultaneously make a call. This sudden
increase in the number of calls may occur for many reasons,
including:

1) Media stimulated events
Televotes for TV shows can generate high calling rates

to particular small ranges of numbers. Such events can
have a very rapid onset, with the calling rate increasing at
a rate of 4 k calls per second per second over 6 seconds as
observed in parts of BTs network. Often these events are
known about in advance, so steps can be taken to prepare
the overload controls. Also they are usually focused on a
small range of destinations and some existing mechanisms
might help to prevent the overload situation.

However, SIP signaling presents many unpredictable
factors (unlike the Erlang traffic model) impacting the
message size as well as the sending rate. IMS applications
are tight-coupled with the SIP signaling, especially using
XML for application data encapsulation. This changes the
signaling traffic and hence dramatically increases the
number of SIP signaling messages together with their
sizes. For instance, presence and IM, which are two typical
IMS applications, follow uncertain traffic models and
generate messages which are relatively large (can be up to
1M bytes).

A recent example in China (2007) has set a record with
SMS-based voting—high SMS traffic of 2 million voting
SMS for favorite singer during a 15-minute interval.

2) Special dates/events
Special dates/events like New Year’s may stimulate high
calling rates to a large number of destinations. Even if it
is known in advance, these events result in diffuse
overloads with no specific destinations that can be used
to target the anomalous load.

3) Disasters
Disasters may stimulate overload. Some times focused

on a few numbers (emergency services and information
lines) and others to a larger number of destinations. The
former case is similar to media stimulated events, albeit
with much less time to prepare the network. The latter is
similar to the special dates/events scenario since there are
no specific destinations. Furthermore, in such scenario the
operator network may itself be damaged (e.g. by flooding)
reducing capacity at the very time that it is exposed to
these additional loads.

E. Non-legitimate traffic

Excess of useless traffic can cause an overload situation.

1) Unintended traffic
Software errors or misconfiguration can cause devices to
generate and send unintentionally a higher amount of the
traffic that they usually generate.

3

> DRAFT VERSION - FOR DISCUSSION ONLY <

2) Denial of Service (DoS) attacks
The goal of a DoS attack is to disrupt service in the
network. This can be done from a central source of traffic
or through a distributed DoS (DDoS) attack and could be
achieved by flooding a SIP server with a high number of
useless requests (flooding attacks) or sending a number of
requests through a server which will receive no answer
from the final destinations (memory attacks).

a) Flooding attacks

An attacker generates a large number of SIP requests.
Even if these requests end up being dropped by the
server, the server will first have to parse and process
them before deciding to either accept and forward, reject
or drop them. Such attacks can misuse a large portion of
the CPU and reduce the capacity for processing
legitimate traffic.

b) Memory attacks

In this scenario the memory depletion is not caused by a
high call arrival rate but due to excessive transaction
delays. The attacker sends valid SIP requests that are
forwarded by the server to destinations that do not
answer properly. With each forwarded request the server
will maintain some transaction state (from 32 seconds up
to 3 minutes), before it can delete the state information.
In addition, stateful servers could retransmit the request
and hence increase the signaling load.

Non-legitimate traffic can be disguised as legitimate traffic
so distinguishing between a DoS attack or a sudden surge in
traffic due to some event is not always possible.

V. CATEGORIES OF SIP SERVER OVERLOAD

SIP server overload can be grouped into two main categories:
server to server overload or client to server overload.

A. Server to server overload

In this scenario a relatively small number of upstream
servers are sending a large amount of traffic to the same
receiving server, putting it into overload.

B. Client to server overload

This type of overload occurs when a large number of clients
overload the next hop server directly.

VI. IMPACT OF OVERLOAD

During periods of overload, the effective throughput of a
SIP server can be significantly degraded. In fact, overload
may lead to a situation in which the throughput drops down to
a small fraction of the engineered throughput, exceeding
customer tolerance of long set-up delays while blocking
internal system resources as well as inducing a cascade effect
which will overload other servers. In extreme overload
situations it might even cause failures of the elements that are
trying to process the traffic and lead to service discontinuity.

A. Impact on user behavior

User persistence can lead to a number of repeat attempts
when service requests are rejected. This results in an

increased number of requests which worsen he overload
situation. Therefore, it is desired to maintain the effective
throughput as high as possible subject to keeping response
time small enough to preclude customers (and protocol
retransmission mechanisms) repeating service requests.

B. Impact on resources

Resources include all of the capabilities of the SIP server
used to process a request. There are two main resources that
may get overloaded at a SIP server, CPU processing and
memory. Other resources including I/O, and disk resources
might also get overloaded.

1) CPU
CPU resources are used for parsing incoming messages
and executing service specific tasks which might include
validating the request format, writing logging information
or evaluating a user’s profile.
During overload, the effective CPU resources go down,
since much of the capacity is spent just rejecting requests
or treating load that it cannot actually process.

2) Memory
A SIP server can act either at stateful or stateless mode.
When acting in stateful mode, which is the most common
scenario, a SIP server needs to keep some state
information describing on-going transactions/sessions for a
certain period of time. If no protective measures are taken,
all of the memory available to the server might be
occupied in overload situations. In such a case the server
would no longer be able to serve new calls.

3) Other Resources
Besides these two main resources several other resources
are essential to the proper working of a SIP server. This
includes the number of busy ports, ISDN trunks and disk
space.

However, resources beyond CPU and memory are out the
scope of this document.

C. Impact on other servers

As SIP has the feature of being able to select another server
if service is lost at the current one, the overload or failure of
a SIP server might cause even more load on the remaining
servers. Unfortunately, the impact of overload on other
servers and services can be difficult to predict.

VII. OVERLOAD CONTROL

The goal of SIP overload control is targeted to maximize the
successful call setup rate while keeping the amount of used
resources at the SIP server at predictable levels.

Reducing the load on the SIP server can be realized by means
of the internal overload control by either dropping incoming
requests or rejecting them. However, because dropping or
rejecting requests takes processing effort (cost in terms of
CPU usage), effective throughput at an overloaded resource
must eventually fall as the load offered to it is increased; and
ultimately it will spend all its time dropping or rejecting
requests. To prevent this, it is necessary to reduce the offered

4

> DRAFT VERSION - FOR DISCUSSION ONLY <

load to the level at which its effective throughput is
maximized. This is achieved by means of the external
overload control.

A. Internal overload control

Internal overload control is implemented locally on a SIP
server. All resources that can get into processor overload have
a function that can detect processor overload and an admission
function that drops or rejects just enough incoming demand to
maximize successful completion of admitted sessions. Such
adaptive internal overload control is, in fact, the approach
taken by most telcos’ PSTN call processors.

a) Explicit request rejection

Basically, the overloaded server rejects a service request
by sending an explicit response indicating that the
request was rejected due to processing overload.
Figure 1 shows that the amount of resources used for
serving requests is much higher than that for rejecting
them.

b) Request drop

In this case, the overloaded server does not reject a
service request but drops it instead. Figure 1 suggests that
dropping incoming requests, consumes slightly less CPU
at the SIP server than rejecting them. However, messages
that get dropped due to overload can be retransmitted and
hence increase the offered load for the already
overloaded server. Therefore, the dropping approach will
actually be more costly in terms of CPU usage at the end.

Figure 2 shows the effect of messages being dropped in
the case the receiving SIP server is either overloaded or
the network is lossy.

Figure 1— Comparison between accepting, dropping and rejecting
requests. Source: Sisalem, D. and J. Floroiu; Protecting VoIP Service
Against DoS Using Overload Control

Figure 2— Number of retransmissions in the case where all requests are
dropped. Source: Sisalem, D., Floroiu, J. and M. Liisberg; VoIP
Overload, a Senders Burden

B. External overload control

As shown, internal (local, receiver-based) overload control
techniques can provide a simple remedy for light cases of
overload; however, as previously mentioned it is ineffective to
treat higher amounts of load.

The goal of the external (distributed, feedback-based) control
is to use an explicit overload signal to request a reduction on
the offered load. This enables a SIP server to adjust the
offered load to a level to match the resources capacity,
whatever the capacity may be, and however many demand
sources are causing the overload.

In this ideal situation, there would be no message
retransmission due to timeout or message drop and no extra
processing cost due to rejection. The server CPU power can be
fully utilized to deliver its maximum session service capacity.

Figure 3— External overload control. Source: Shen, C., Schulzrinne, H.
and E. Nahum; Session Initiation Protocol (SIP) Server Overload Control:
Design and Evaluation

Through a feedback channel (which is usually hop-by-hop but
could also be end-to-end), the receiving entity notifies the
sending entity the amount of load that is acceptable. There are
three main components in the model: feedback algorithm
execution at the receiving server, feedback communication
from receiving server to the sending node, and feedback

5

> DRAFT VERSION - FOR DISCUSSION ONLY <

enforcement at the sending node. The following are four
different types of overload control feedback algorithm.

a) Rate-based Overload Control

The key idea is to limit the request rate (requests per
second) at which the sending node is allowed to forward
to the SIP server. Each sending node could be assigned a
different rate.

b) Loss-based Overload Control

This enables a SIP server to ask a sending node to reduce
the number of requests it would normally send by a
percentage. An advantage of using a percentage value is
that the receiving server does not need to track the set of
sending nodes or the request rate it receives from each
sending node. It is sufficient to monitor the overall
system utilization.

c) Window-based Overload Control

Here each sender maintains an overload window that
limits the number of messages that can be in transit
without being confirmed. Window-based overload
control is inherently self-limiting; i.e. the sending node
will stop sending traffic if it does not receive any
feedback from an overloaded server.

d) On/Off Overload Control

This type of feedback enables a SIP server to turn the
traffic it is receiving from a sending node either on or
off.
Unfortunately, the On/Off approach results in a stop and
go traffic behavior at the overloaded server which would
lead to an oscillative and instable over all network
behavior.

C. Existing SIP overload control mechanisms

Without overload control, messages that cannot be processed
by the server are simply dropped. As mentioned, simple drop
causes the corresponding SIP timers to fire, and further
amplifies the overload situation.

SIP provides very basic support for overload. It defines the
503 Service Unavailable response, which is sent by an
element that is overloaded to inform an upstream element that
it is overloaded. The objective is to provide a mechanism to
move the work of the overloaded server to another server so
that the request can be processed. The Retry-After header
field, when present, is meant to allow a server to tell an
upstream element to back off for a period of time, so that the
overloaded server can work through its backlog of work.

To some extent the existing SIP 503 Service Unavailable
mechanism with the “Retry-after” header is a basic form of
the feedback mechanism and represents an on/off overload
control approach.

D. Limitations with existing SIP overload control
mechanisms

At the surface, the 503 mechanisms seems to be workable.
Unfortunately, this mechanism is suboptimal for managing

overload and a number of drawbacks and limitations have
been identified.

a) Load Amplification

The principal problem with the 503 mechanism is that it
tends to substantially amplify the load in the network
when the network is overloaded, causing further
escalation of the problem and introducing of congestive
collapse. The 503 mechanism works well when a single
element is overloaded. But when the problem is overall
network load, the 503 mechanism actually generates
more messages and more work for all servers, ultimately
resulting in the rejection of the request anyway.

b) Underutilization

There are also examples of deployments where the
network capacity is greatly reduced as a consequence of
the overload mechanism. For example, a 503 response
from a single server will make the sending entity believe
that an entire cluster is overloaded.

c) Overload as a binary state

The Retry-After mechanism allows a server to tell a
sending node to stop sending traffic for a period of time.
The work that would have otherwise been sent to that
server is instead sent to another server. The mechanism is
an all-or-nothing technique, also known as the On/Off
Retry-After problem. It interprets the overload as a binary
state and does not recognize the fact that there are several
degrees of overload. A server can turn off all traffic
towards it, or none. There is nothing in between. This
tends to cause highly oscillatory behavior under even
mild overload.
It is important to observe that this problem is only
observed for servers where there are a small number of
sending nodes sending a large amount of traffic. If a
server is accessed by a large number of clients, each of
which sends a small amount of traffic, the 503
mechanism with Retry-After is quite effective when
utilized with a subset of the clients. This is because
spreading the 503 out amongst the clients has the effect
of providing the server more fine-grained controls on the
amount of traffic it receives.

d) Ambiguous Usages

RFC 3261 is unclear on the scope and do not provide any
guidelines for the 503 retry-after duration. Hence the
specific instances under which a server is to send a 503
are ambiguous.

VIII.CONCLUSIONS

Over time, the PSTN overload controls have been finely tuned
to maximize network efficiency when the network is subjected
to overloads. However, SIP has only limited capabilities to
control network overloads with the use of a 503 retry
message, which indicates that a network element is unable to
process requests. A number of drawbacks and limitations have
been identified with this mechanism.

The SIP server overload problem is interesting since the cost
of rejecting a request is not negligible compared to the cost of

6

> DRAFT VERSION - FOR DISCUSSION ONLY <

serving it. Also the various SIP timers lead to many
retransmissions in overload which amplify the situation.

SIP servers need to incorporate mechanisms that would deal
with the overload condition in a manner that would not lead to
a complete service interruption. These mechanisms,
irrespective of the overloaded resource’s capacity and the
number of sources generating the overload, should:

• Use dynamic parameter setting so that they take into
consideration the cause of the overload as well the
nature and state of the overloaded resource in its
reaction to overload

• Keep response times and blocking probability low
and enable the server to serve at a meaningful
throughput under all circumstances— i.e. stabilizing
the behavior the server during overload conditions
and preventing a complete collapse of the service.

• Be aware of different importance levels of messages
— be able to know which types of service requests
may drop/reject and which may not is essential to
enforce SLAs and regulation requirements. It is also
important to note that users making standard calls do
not expect mass media campaigns to interfere in their
normal service experience.

• Be applied to servers using any transport protocol
and to protect all kinds of server resources

• Prevent forwarding traffic to other servers that might
be overloaded themselves and

• Work even if not all servers in the network support it
— hence it could be introduced without requiring
other servers to support overload mechanisms.

While internal overload detection and control is necessary to
ensure element protection, when load increases beyond
engineered limits, it is more efficient to throttle requests as the
source rather than at the overloaded element. The external
overload control might be used to limit offered load to an
overloaded server. Anyhow, the internal overload control shall
be effective enough to ensure server protection under DoS
attacks.

REFERENCES

For the purposes of this document, the following references apply:
Note: While any hyperlinks included in this clause are valid at the time
of writing this document, their long term validity cannot be
guaranteed.

[1] Whitehead MJ and Williams PM, Adaptive Network Overload
Controls, BT Technology Journal, Vol. 20, No.3, July 2002

[2] Sisalem, D. and J. Floroiu; Protecting VoIP Service Against DoS
Using Overload Control

[3] Sisalem, D., Floroiu, J. and M. Liisberg; VoIP Overload, a Senders
Burden

[4] Shen, C., Schulzrinne, H. and E. Nahum; Session Initiation
Protocol (SIP) Server Overload Control: Design and Evaluation

[5] V. Hilt; Design Considerations for Session Initiation Protocol
(SIP) Overload Control, IETF draft-ietf-sipping-overload-design
(Work in Progress), January 2009
http://tools.ietf.org/html/draft-ietf-sipping-overload-design

[6] Hilt, V. and I. Widjaja; Controlling Overload in Networks of SIP
Servers

[7] Hilt, V. and I. Widjaja; Session Initiation Protocol (SIP) Overload
Control, IETF draft-hilt-sipping-overload (Work in Progress),

July 2009
http://tools.ietf.org/html/draft-hilt-sipping-overload

[8] M. Ohta; Overload Control in a SIP Signaling Network
[9] ETSI; Architecture for Control of Processing Overload, ETSI DTR/

TISPAN-02026_NGN, 2006
[10] MSF; NGN Control Plane Overload and its Management, MSF

Technical Report, February 2006
[11] Noel, E. and C. Johnson; Initial Simulation Results that analyze

SIP based VoIP Networks under overload
[12] M. Ohta; Effects of Interaction between Transport and

Application Layers on SIP signaling performance
[13] Li, B., Wang, D. and S. Zhang; Policy Based SIP signaling

Management in IMS
[14] J. Rosenberg; Requirements for management of Overload in the

Session Initiation Protocol, IETF RFC 5390, December 2008
http://tools.ietf.org/html/rfc5390

[15] Zhang, Y., Zhang, Z., Zhang F. and Y. Li; A new overload
Control Algorithm of NGN Service Gateway

7

	I. Introduction
	II. Definitions and abbreviations
	A. Definitions
	B. Abbreviations

	III. interaction between transport and application layers
	A. SIP over unreliable transport protocols
	1) INVITE transaction retransmission
	2) Non-INVITE transaction retransmission

	B. SIP over reliable transport protocols

	IV. Causes of sip server overload
	A. Poor Capacity Planning
	B. Capacity Reduction
	1) Dependency Failures
	2) Internal Failures
	3) External Failures

	C. Avalanche Restart
	1) Reboots after a Blackout
	2) Failure of a large network connection
	3) Failure of a SIP server

	D. Flash crowds
	1) Media stimulated events
	2) Special dates/events
	3) Disasters

	E. Non-legitimate traffic
	1) Unintended traffic
	2) Denial of Service (DoS) attacks
	a) Flooding attacks
	b) Memory attacks

	V. Categories of sip server overload
	A. Server to server overload
	B. Client to server overload

	VI. Impact of overload
	A. Impact on user behavior
	B. Impact on resources
	1) CPU
	2) Memory
	3) Other Resources

	C. Impact on other servers

	VII. Overload control
	A. Internal overload control
	a) Explicit request rejection
	b) Request drop

	B. External overload control
	a) Rate-based Overload Control
	b) Loss-based Overload Control
	c) Window-based Overload Control
	d) On/Off Overload Control

	C. Existing SIP overload control mechanisms
	D. Limitations with existing SIP overload control mechanisms
	a) Load Amplification
	b) Underutilization
	c) Overload as a binary state
	d) Ambiguous Usages

	VIII. Conclusions

